Paradigms for teaching artificial intelligence in Ecuadorian education
DOI:
https://doi.org/10.62305/alcon.v4i3.139Keywords:
inteligencia artificial; enseñanza; aprendizaje; paradigmas para la enseñanza.Abstract
Having taught artificial intelligence in the educational field has been a unique and enriching experience, given its historical and continuous role. Introducing students to the history of artificial intelligence has played a critical role in its development. Having explored the key concepts of artificial intelligence such as the production system, symbolic reasoning and machine learning has allowed us to develop this type of paradigm as a new approach in the education of this generation. Teaching the fundamentals of symbolic programming such as list manipulation, definition of recursive functions, symbolic representation of knowledge and manipulation of symbols, how to design and develop expert systems using artificial intelligence. This involves teaching them to represent domain knowledge, implement inference rules, and create feedback systems to improve system performance. Having explored symbolic machine learning techniques, such as decision tree induction, Bayesian inference and fuzzy logic in collaboration on research projects. Having integrated these paradigms, students can gain a deep understanding of artificial intelligence while developing practical programming skills.
Downloads
References
Abelson, H. (1996). Structure and Interpretation of Computer Programs, Second Edition. Cambridge.
Arco, J. C. (2023). Implementación de Interfaz en Common. Madrid : Universidad Politécnica de Madrid .
Cruz, F. (2012). Importancia de la evaluación y autoevaluación en el rendimiento académico. México: Revista del Instituto.
García, F. (2023). ¿Por qué enseñar a aprender en la universidad? Madrid: Dialnet.
Jr., G. S. (1990). Common LISP. The Language. Second Edition. Massachusetts: Digital Press; 2nd Updated edición.
Keene, S. E. (1989). Object-Oriented Programming in COMMON LISP: A Programmer's Guide to CLOS. Addison-Wesley Professional.
Lamkins, D. (2004). Successful Lisp: How to Understand and Use Common Lisp. BookFix.com .
McCarthy, J. (1960). Recursive Functions of Symbolic Expressions. Massachusetts: Massachusetts Institute of Technology.
McCarthy, J. (1985). Programmer´s manual. Cambridge: Massrchusetts Institute of Toohnology.
Moyne, J. (2023). LISP. PRIMER LENGUAJE PARA PROGRAMADORES DE COMPUTADORAS.
Santos, M. (2019). La magia del triángulo: convivencia, conflicto e inclusión. Málaga: Contextos Educativos .
Seibel, P. (2005). Practical Common Lisp. Berkeley: Apress.
Shapiro, S. (1991). Common LISP: an interactive approach. New York: Library of Congress Cataloging-in-Publication Data.
Steele, G. (11990). Common LISP. The Language. Second Edition . Boston: Digital Press; 2nd Updated edición.
Touretzky, D. S. (1989). COMMON LISP:. California: Carnegie Mellon University.
Walrond, A. (2009). Practical Common Lisp - Distilled.
Watson, M. (2024). Loving Common Lisp, or the Savvy Programmer's Secret Weapon. McGraw-Hill.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientific Journal of Educational Innovation and Current Society "ALCON". ISSN 2960-8473

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.